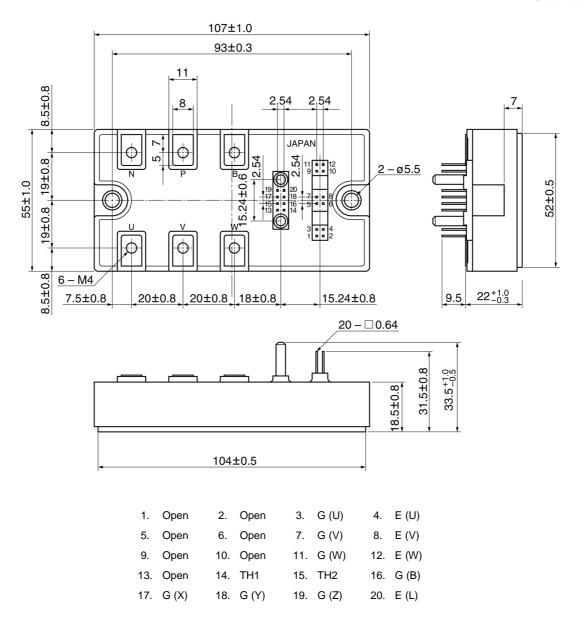

TOSHIBA GTR Module Silicon N Channel IGBT

MG150J7KS60 (600V/150A 7in1)

High Power Switching Applications Motor Control Applications

- · Integrates inverter and brake power circuit into a single package
- The electrodes are isolated from case.
- Low thermal resistance
- $V_{CE (sat)} = 1.6 \text{ V (typ.)}$

Equivalent Circuit


Signal Terminal

1.	Open	2.	Open	3.	G (U)	4.	E (U)
5.	Open	6.	Open	7.	G (V)	8.	E (V)
9.	Open	10.	Open	11.	G (W)	12.	E (W)
13.	Open	14.	TH1	15.	TH2	16.	G (B)
17.	G (X)	18.	G (Y)	19.	G (Z)	20.	E(L)

2001-10-03

Package Dimensions: 2-108G1B

Unit: mm

2 2001-10-03

Maximum Ratings (Ta = 25°C)

Stage	Characteristics	Symbol	Rating	Unit		
	Collector-emitter voltage	V _{CES}	600	V		
	Gate-emitter voltage	V _{GES}	±20	V		
	Collector current	DC	Ic	150	Α	
Inverter	Collector current	1 ms	I _{CP}	300	A	
	Forward current	DC	l _F	150	۸	
	Forward current	1 ms	I _{FM}	300	Α	
	Collector power dissipation (Tc =	PC	750	W		
	Collector-emitter voltage	V _{CES}	600	V		
	Gate-emitter voltage	V _{GES}	±20	V		
	Collector current	DC	Ic	75	Α	
Brake	Collector current	1 ms	I _{CP}	150	A	
Diake	Collector power dissipation (Tc =	PC	375	W		
	Reverse voltage	V _R	600	V		
	Forward current	DC	I _F	75	Α	
	1 ms		I _{FM}	150	A	
	Junction temperature	Tj	150	°C		
	Storage temperature range	T _{stg}	-40~125	°C		
Module	Isolation voltage	V _{isol}	2500 (AC 1 min)	V		
	Termir		_	2 (M4)	N·m	
	Screw torque	_	3 (M5)	IN.III		

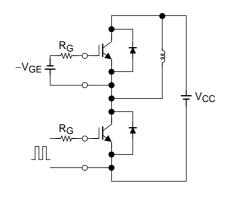
Electrical Characteristics ($T_j = 25$ °C)

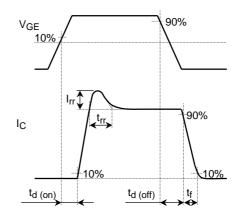
1. Inverter stage

Characteristics		Symbol	Test Condition		Min	Тур.	Max	Unit
Gate leakage current		I _{GES}	$V_{GE} = \pm 20 \text{ V}, V_{CE} = 0$		_	_	±500	nA
Collector cut-off current		I _{CES}	V _{CE} = 600 V, V _{GE} = 0		_	_	1.0	mA
Gate-emitter cut-off voltage		V _{GE} (off)	V _{CE} = 5 V, I _C = 150 mA		5.0	6.5	8.0	V
Collector-emitter saturation voltage		V _{CE (sat)}	V _{GE} = 15 V, I _C = 150 A	$T_j = 25^{\circ}C$	_	1.6	2.2	V
				T _j = 125°C	_	_	2.2	V
Input capacitance		C _{ies}	V _{CE} = 10 V, V _{GE} = 0, f = 1 MHz		_	25000	_	pF
	Turn-on delay time	t _{d (on)}			_	_	1.00	
Switching time	Turn-off time	t _{off}	$V_{CC} = 300 \text{ V, } I_{C} = 15 \text{ V}_{GE} = \pm 15 \text{ V, } R_{G} = 1 \text{ V}_{CC} = 15 \text{ V}_{C$		_	_	1.20	
	Fall time	t _f		(Note 1)	_	_	0.50	μS
Reverse recovery time		t _{rr}			_	_	0.30	
Forward voltage		V _F	I _F = 150 A		_	2.0	2.2	V

Note 1: Switching time test circuit & timing chart

2. Brake stage


Characteristics		Symbol	Test Condition		Min	Тур.	Max	Unit
Gate leakage current		I _{GES}	$V_{GE} = \pm 20 \text{ V}, V_{CE} = 0$		_	_	±500	nA
Collector cut-off current		I _{CES}	V _{CE} = 600 V, V _{GE} = 0		_	_	1.0	mA
Gate-emitter cut-off voltage		V _{GE} (off)	$V_{CE} = 5 \text{ V}, I_{C} = 75 \text{ mA}$		5.0	6.5	8.0	V
Collector-emitter saturation voltage		V _{CE (sat)}	V _{GE} = 15 V, I _C = 75 A	T _j = 25°C	_	1.6	2.2	V
				T _j = 125°C	_	_	2.2	
Input capacitance		C _{ies}	V _{CE} = 10 V, V _{GE} = 0, f = 1MHz		_	12000		pF
	Turn-on delay time	t _{d (on)}	V _{CC} = 300 V, I _C = 75 A		_	_	1.00	
Switching time	Turn-off time	t _{off}	$V_{GE} = \pm 15 \text{ V, R}_{G} =$	= 24 Ω	_	_	1.20	μS
	Fall time	t _f		(Note 1)	_	_	0.50	
Reverse current		I _R	V _R = 600 V		_	_	1.0	mA
Forward voltage		V _F	I _F = 75 A		_	2.1	2.6	V


Note 1: Switching time test circuit & timing chart

3. Module ($Tc = 25^{\circ}C$)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit	
Zero-power resistance R25 ITM = 0.2 mA		ITM = 0.2 mA	_	100	_	kΩ	
B value	B25/85 Tc = 25°C/Tc = 85°C		_	4390	_	K	
	В	Inverter IGBT stage	_	_	0.167		
Junction to case thermal resistance		Inverter FRD stage	_	_	0.313	°C/W	
Junction to case thermal resistance	R _{th (j-c)}	Brake IGBT stage	_	_	0.333	3	
		Brake FRD stage	_	_	1.000		
Case to fin thermal resistance	R _{th (c-f)}	_	_	0.05	_	°C/W	

Switching Time Test Circuit & Timing Chart

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.