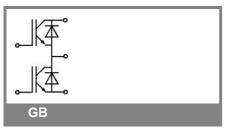


IGBT Module

SK25GB12T4

Target Data


Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	$T_j = 175 ^{\circ}\text{C}$ $T_s = 25 ^{\circ}\text{C}$)	37	Α	
	T _s = 70 °C		30	Α	
I _{CRM}	I _{CRM} = 3 x I _{Cnom}		75	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; T_j = 150 ° VCES < 1200 V	С	10	μs	
Inverse D	iode			•	
I _F	$T_{j} = 175 ^{\circ}\text{C}$ $T_{s} = 25 ^{\circ}\text{C}$		30	Α	
	T _s = 70 °C		25	Α	
I _{FRM}	I _{FRM} = 3 x I _{Fnom}		75	Α	
I _{FSM}	t_p = 10 ms; half sine wave T_j = 150 °	С	160	Α	
Module					
$I_{t(RMS)}$				Α	
T_{vj}			-40 + 175	Ç	
T _{stg}			-40 + 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_{C} = 0.85 \text{ mA}$		5	5,8	6,5	V
I _{CES}		T _j = 25 °C			0,0024	mA
	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 150 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30		mΩ
		T _j = 150°C		50		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V
C _{ies}				1,43		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,115		nF
C _{res}				0,085		nF
Q_G	V _{GE} =-7V+15V			137,5		nC
$t_{d(on)}$				22		ns
t _r	$R_{Gon} = 19 \Omega$	V _{CC} = 600V		19,5		ns
E _{on}	di/dt = 2825 A/μs	I _C = 25A		2,27 288		mJ
${f t}_{\sf d(off)} \ {f t}_{\sf f}$	R_{Goff} = 19 Ω di/dt = 2825 A/µs	T _j = 150 °C V _{GE} = -7/+15V		200 77,5		ns ns
E _{off}	2.2. 2020 / 1/40	GE // IOV		2,7		mJ
R _{th(j-s)}	per IGBT	1		1,31		K/W

SEMITOP® 2

IGBT Module

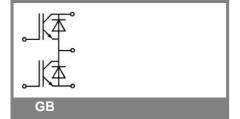
SK25GB12T4

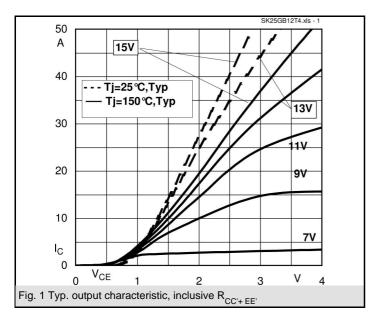
Target Data

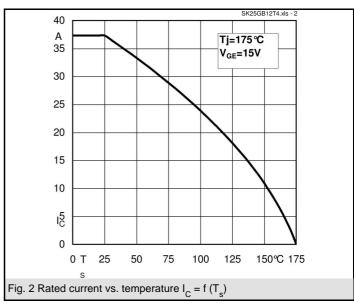
Features

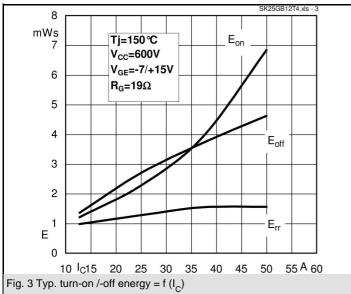
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD

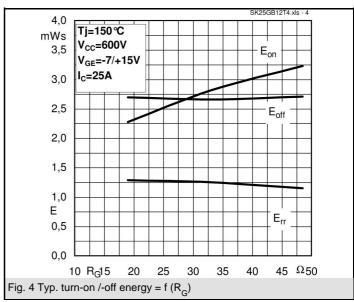
Typical Applications*


Remarks


V_{CE,sat} , V_F = chip level value


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V			2,4	2,62	V		
		T_j = 150 °C _{chiplev} .		2,45	2,8	V		
V _{F0}		T _j = 25 °C		1,3	1,5	V		
		T _j = 150 °C		0,9	1,1	V		
r _F		T _j = 25 °C		44	45	mΩ		
		T _j = 150 °C		62	68	mΩ		
I _{RRM}	I _F = 25 A	T _i = 150 °C		31,5		Α		
Q_{rr}	di/dt = 2825 A/µs	,		1,15		μC		
E _{rr}	V _{CC} = 600V			1,28		mJ		
$R_{th(j-s)D}$	per diode			1,91		K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				30		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

