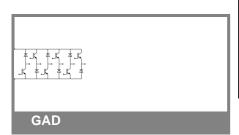


IGBT Module

SK25GAD063T


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63 532
- Integrated PTC temperature sensor

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	30	Α		
		T _s = 80 °C	21	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse D	iode			•		
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		Α		
		T _s = 80 °C		Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
Freewhee	ling Diode					
I _F	T _j = 150 °C	T_{case} = 25 °C	36	Α		
		T _{case} = 80 °C	24	Α		
I_{FRM}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	200	Α		
Module						
$I_{t(RMS)}$				Α		
T_{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specifie						pecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.7$ mA		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _i = 25 °C			0,1	mA
		T _j = 125 °C				mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 30 \text{ V}$				120	nA
		T _j = 125 °C				nA
V _{CE0}		T _i = 25 °C		1,2		V
		T _j = 125 °C		0,8		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30		mΩ
		T _j = 125°C		47		mΩ
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V			2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev}$		2,2		V
C _{ies}				1,35		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF
C _{res}				0,12		nF
t _{d(on)}				40		ns
t _r	$R_{Gon} = 33 \Omega$	$V_{CC} = 300V$		50		ns
E _{on}		I _C = 25A		1,3		mJ
$t_{d(off)}$	$R_{Goff} = 33 \Omega$	T _j = 125 °C		200		ns
t _f		V _{GE} =±15V		25		ns
E _{off}				0,9		mJ
$R_{th(j-s)}$	per IGBT				1,4	K/W

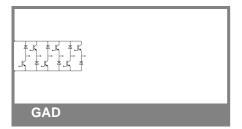
IGBT Module

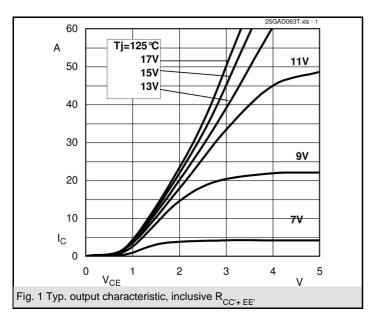
SK25GAD063T

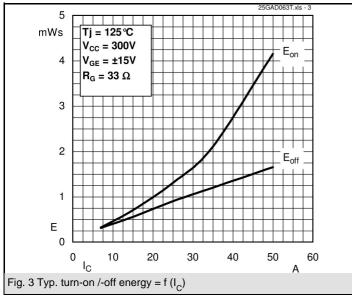
Preliminary Data

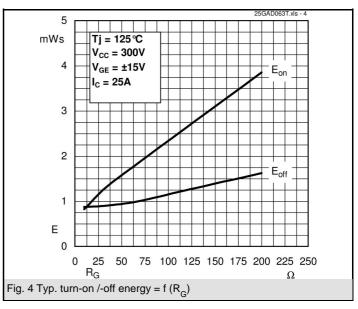
Features

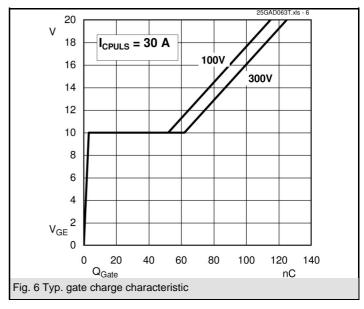
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63 532
- Integrated PTC temperature sensor


Typical Applications*


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	aracteris	stics						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mbol (Conditions		min.	typ.	max.	Units	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= V _{EC}	I _{Fnom} = 10 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,45	1,7	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T_j = 125 °C _{chiplev} .		1,4	1,7	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		T _j = 125 °C		0,85	0,9	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 125 °C		55	80	mΩ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T _i = 125 °C		6,5		Α	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	di/dt = 200 A/μs			1		μC	
	\	V _{CC} = 300V			0,1		mJ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(j-s)D	per diode				2,3	K/W	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ng Diode						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= V _{EC}	$I_{Fnom} = 25 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45	1,7	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,75	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T _j = 25 °C				V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 125 °C		0,85	0,9	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			T _j = 125 °C		22	32	V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M I	I _F = 25 A	T _j = 125 °C		16		Α	
R _{th(j-s)FD} per diode 1,7 M _s to heat sink M1 2,25 2,5 w 30	C	di/dt = -500 A/µs			2		μC	
M _s to heat sink M1 2,25 2,5 w 30	\	V _R =300V			0,25		mJ	
M _s to heat sink M1 2,25 2,5 w 30	_{(j-s)FD}	per diode				1,7	K/W	
		to heat sink M1		2,25		2,5	Nm	
Temperature sensor					30		g	
	Temperature sensor							
R _{ts} 3%, T _r = 25 (100)°C 1000 (1670)	3	3%, T _r = 25 (100)°C					Ω	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

