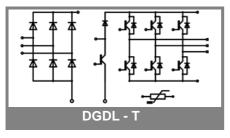
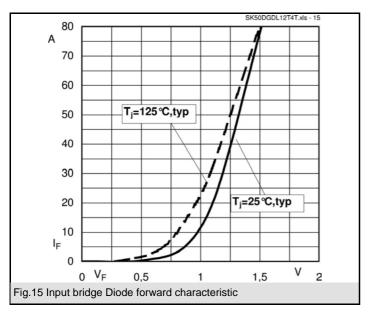
SK50DGDL12T4T

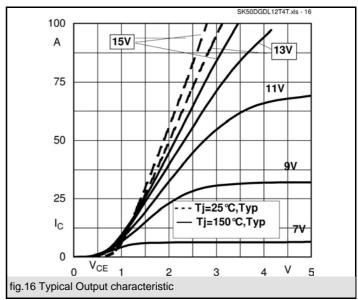

SEMITOP®4

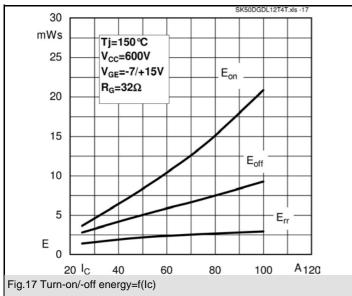
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 50 DGDL 12T4 T

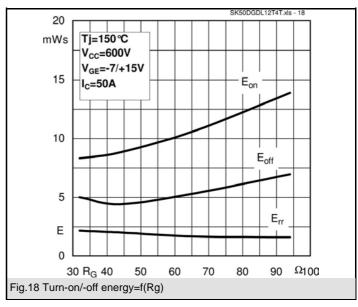
Target Data

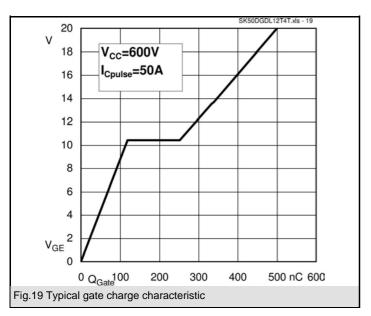
Features

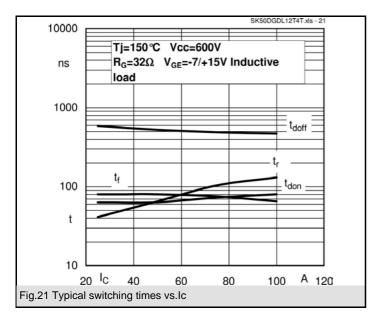

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench4 IGBT technology
- CAL4 technology free-wheeling diode
- Integrated NTC temperature sensor
- 1) $V_{CE,sat}$, V_F = chip level value

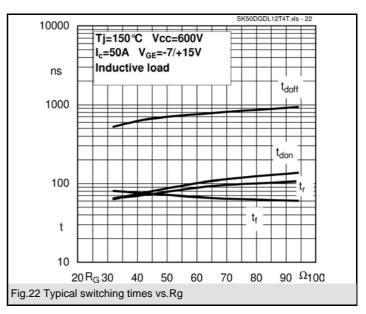


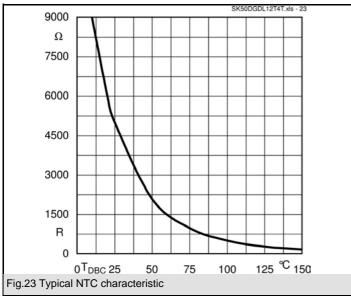

Absolute Maximum Ratings Ts = 25 °C, unless otherwise specifie								
Symbol	Conditions	Values	Units					
IGBT - Inverter.For IGBT chopper maximum ratings, please refer to								
SK35DGDL12T4T								
V_{CES}		1200	V					
I _C	T _s = 25 (70) °C	75 (60)	Α					
I _{CRM}	I_{CRM} = 3 x I_{Cnom} , t_p = 1 ms	150	Α					
V_{GES}	·	± 20	V					
T _j		-40 + 175	°C					
Diode - Inverter, Chopper								
I _F	T _s = 25 (70) °C	60 (45)	Α					
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	150	Α					
T_j		-40 + 150	°C					
Rectifier								
V_{RRM}		1600	V					
I _F	T _s = 70 °C	61	Α					
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, $\sin 180 ^{\circ}$, $T_i = 25 ^{\circ}\text{C}$	700	Α					
I ² t	$t_{p} = 10 \text{ ms}$, sin 180 °, $T_{i} = 25 \text{ °C}$	2400	A²s					
T_j	, i	-40 + 175	°C					
T _{sol}	Terminals, 10 s	260	°C					
T _{stg}		-40 +12 5	°C					
V _{isol}	AC, 1 min. / 1 s	2500 / 3000	V					

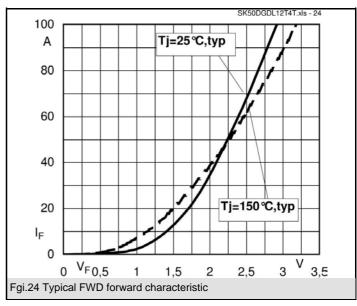

Characteristics Ts = 25 °C, unless otherwise specified								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inv	verter. For IGBT chopper electric	al charac	teristics,	please ref	er to			
SK35DGDL12T4T								
V _{CEsat}	$I_C = 50 \text{ A}, T_i = 25 (150) °C$		1,85 (2,2)	2,05 (2,45)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.7 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	$T_j = 25 ^{\circ}\text{C} (150) ^{\circ}\text{C}$		1,1 (1)	1,3 (1,2)	V			
r _T	T _j = 25 °C (150) °C		15 (24)		mΩ			
C _{ies}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		2,77		nF			
C _{oes}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,2		nF			
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,16		nF			
R _{th(j-s)}	per IGBT		0,65		K/W			
$t_{d(on)}$	under following conditions		63		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		65		ns			
t _{d(off)}	$I_C = 50 \text{ A}, T_j = 150 ^{\circ}\text{C}$		521		ns			
<u>t</u>	$R_{Gon} = R_{Goff} = 32 \Omega$		80		ns			
E _{on}	inductive load		8,3		mJ			
E _{off}			5		mJ			
Diode - In	verter,Chopper							
$V_F = V_{EC}$	$I_F = 50 \text{ A}, T_i = 25(150) ^{\circ}\text{C}$		2,22 (2,18)	2,54 (2,5)	V			
V _(TO)	T _j = 25 °C (150) °C		1,3 (0,9)	1,5 (1,1)	V			
r _T	T _j = 25 °C (150) °C		18,4 (25,6)	20,8 (28)	mΩ			
$R_{th(j-s)}$	per diode		0,97		K/W			
I _{RRM}	under following conditions		30		Α			
Q_{rr}	I _F = 50 A, V _R = 300 V		7,2		μC			
E _{rr}	V _{GE} = 0 V, T _j = 150 °C		2,15		mJ			
	$di_{F/dt} = 920 \text{ A/}\mu\text{s}$							
Diode - Rectifier								
V _F	$I_F = 50 \text{ A}, T_i = 25(150) ^{\circ}\text{C}$	1	1,1		V			
V _(TO)	T _i = 150 °C		0,8		V			
r _T	T _i = 150 °C		6		mΩ			
$R_{th(j-s)}$	per diode		0,9		K/W			
	ur sensor	1			<u>' </u>			
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical data								
w		İ	60		g			
M_s	Mounting torque		3,5		Nm			
	7 0.4 2000 DII	<u> </u>		W CEMIN				


SK50DGDL12T4T

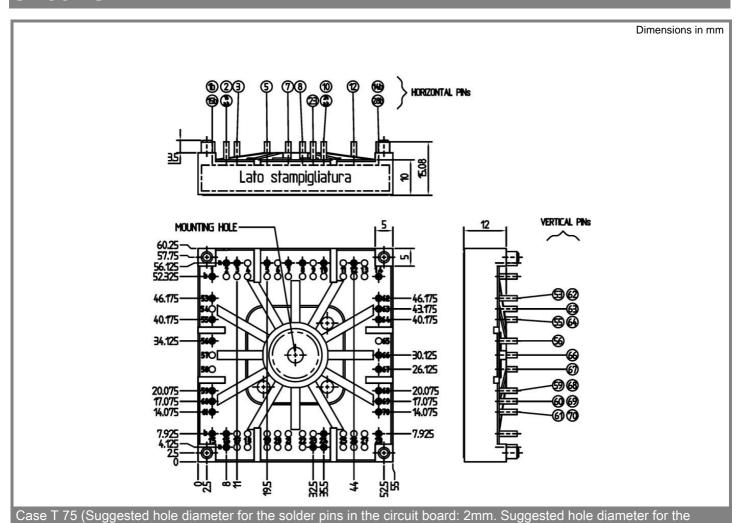


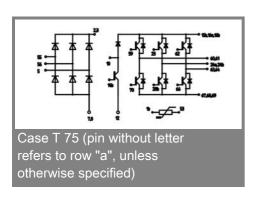






SK50DGDL12T4T





3 27-04-2009 DIL © by SEMIKRON

mounting pins in the circuit board: 3,6mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.